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ANALYTIC PROPERTIES OF Rt~NYI'S 
INVARIANT DENSITY 

BY 

M A T T H E W  H A L F A N T  

ABSTRACT 

Under  certain conditions a many-to-one transformation of the unit interval onto 
itself possesses a finite invadant ergodic measure equivalent to Lebesgue 
measure. The purpose of this paper is to investigate these conditions and to 
show how differentiable and analytic properties of the invariant density are 
inherited from the original transformation. 

1. Introduct ion 

Let  P be  a finite partit ion of  I = [0, 1] specif ied by 0 = a0 < a~ < �9 �9 < a~ = 1 

(p => 2). Let  T be a transformation on I which maps  each e l e m e n t  of  P on to  I in 

a monotone  increasing way: 

T(a , - l+)=O,  T ( a , - ) =  1, i = 1 , 2 , . . . , p .  

Such a transformation is suggested in Fig. 1, drawn for p -- 3. Notice that T n is 

a o a, a 2 % 
Fig. 1 
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again a transformation of the same type, there being p" branches instead of p. In 

a classic paper of 1957 [5], R6nyi introduced a hypothesis on T that posited the 

existence of an absolute constant C such that on any individual branch of T", for 

any n, the ratio of maximum to minimum slope is < C. This was the crucial 

condition in R6nyi's demonstration of an ergodic invariant measure v for T" 

v(T-IB)  = v(B) for all Borel sets B CL 

v is equivalent to Lebesgue measure/x,  and the invariant density 

dv 
h =  

dr 
is shown by R6nyi to satisfy almost everywhere on I the inequality 

1 <  
(i) K = h _-< c,  

the constant being the same as above. We are concerned in this paper with the 

function h; we wish to establish its continuity, differentiability, analyticity; we 

show that these properties are inherited from T (or rather from T restricted to 

each of the elements of P). We show at the same time that h is quite generally 

the uniform limit of the probability density of T"x (x uniform on I) as n ~ =. 

These results are given in section 6. In section 2 we describe the origin of this 

problem. Section 3 sets out the pertinent notations and precise definitions; 

R6nyi's hypothesis, referred to above; is given in section 4. Section 5 deals with 

the problem of identifying the class of transformations T to which R6nyi's 

results apply (and which therefore possess an invariant density). In section 7 we 

briefly indicate some natural generalizations. A final section concludes with 

some acknowledgements. 

2. Background of the problem 

Let 4, E C[0, 1] be strictly increasing from ~b(0) = 0 to 4~(1) = p, an integer 

=> 2. Such a function can be used to associate with each x E [0, 1) an infinite 

integer sequence {k,} as follows. Take for kl the greatest integer in ~b(x), and let 

r1 = ~b(x)- k~ be the remainder. Since r~ lies in [0, 1) we may form an iterative 

scheme: 

k.+~ = [~b(r . ) ] ,  r . . ,  = ~ ( r . ) -  k .§ n => I .  

Such expansions were considered in 1924 by S6ichi Kakeya [3], who in fact 

allowed the function ~b to be either increasing or decreasing, and to have + o0 as 

the upper limit of its range. The idea is that for 
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(2) 4, (x)  = ex  

we get the ordinary expansion to base p, while for 

1 
(3) th (x) = x 

we obtain the simple continued fraction. Kakeya wanted to unite these two kinds 

of expansions into a single generalization. 

Of course for the generalization to be precise we must know that a number x 

can always be retrieved from its associated expansion {k~}. Let f denote the 

function inverse to ~b; then we have 

x = f(k~ + r,) = f ( k ,  + f(k2 + r2)) . . . . .  f ( k ,  + f(k2 + " "  f ( k .  + r . ) . . .  )). 

We denote the final expression more simply by 

x = [ k , , k 2 , . . . , k ~ + r , ] .  

What is wanted is that 

x = lira [k~,k2, . . - ,k,] .  

To obtain a convenient formulation of this requirement, we use the notion of an 

interval of rank n, by which is meant a set of t satisfying an inequality of the form 

[ k , , k 2 , . . . , k , l < - t < [ k ~ , k 2 , ' . . , k . + l ] .  

The elements belonging to this interval are characterized by having k~ through k. 

as the first n terms of their expansions. I is partitioned by p" intervals of rank n, 

and the longest of these, we shall say, has length A.. The condition 

(4) l im A.  = 0 

guarantees that two different x's won't have identical expansions. For choose n 

so that A, is smaller than the difference between these x's; then the expansions 

cannot agree for the first n terms. Thus (4) states compactly that the expansions 

generated by ~b are unique; Kakeya showed that this would obtain on the 

hypothesis that I~b'(x)l > 1 for almost every x E L 

Being provided now with a large class of number expansions, it becomes 

natural to inquire if the statistical regularity of the terms {k,}, well known in the 

case of base p expansions (Borel) and continued fractions (Kuz'min [4]), persists 

into the broader setting drawn by Kakeya. The ergodic methods used by 
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Ryll-Nardzewski [6] are clearly the appropriate tool, and their decisive applica- 

tion was in fact made by R6nyi [5] in 1957. 

Beyond restrictions on th designed purely to insure A, ~ 0 (t ~b'l always => 1, 

but allowed to = 1 on special subintervals of I)  R6nyi was forced to impose the 

hypothesis already mentioned, and spelled out below in section 4. This allowed 

the conclusion that there exists a measurable function h, bounded away from 0 

and from o% such that for almost every x ~ / ,  the sequence of remainders {r,} is 

distributed on I with density h. The regularity of the sequences {k,} follows at 

once. 

In this paper we study the transformation 

T :  x ~ ~b(x)-  [~b(x)] 

carrying each remainder into the next. Our results bear some relation to 

generalizations of the base p expansion (2). Our methods are readily adapted to 

the continued fraction (3) and its generalizations; see s~ction 7. 

3. Notation, terminology, definitions 

Let p be an integer => 2, and partition I = [0, 1] by the points 

0 =  a o < a ~ <  . . .  < ap = 1. 

Let T map I ~ / .  Denote  by T~ the restriction of T to [a l l ,  a~], modified at the 

endpoints so that 

T,(a,_,) = 0, T~(a,) = 1. 

We will say that the transformation T is admissible if the following conditions 

hold: 

1) T(0) = 0, T(1) = 1; for 0 < a, < 1, T(a,) = either 0 or 1. 
2) T~ E C2[a,_l,a,] Vi. 

3) T'~ > 0 on [a~-l, a~] Vi. 

Condition (1) is not essential, but we adopt it to simplify the statement of certain 

results (see Theorem 4 and 5). Condition (2) is stronger than it need be, and 

likewise condition (3); see section 7. We denote the class of admissible 

transformations by M. 

For each i, let ~ denote the function inverse to T,. Thus f~ E C2[0, 1], f'~ > 0 on 

I, and 

/~(0) = aN,  ~ (1 )=  a,. 
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The transformation T" maps I--* I p"-to-1; thus the inverse mapping has p" 

branches, of which we denote the ith by f,~. We define f,.~ at 0 and 1 so as to 

make the result continuous on I. 

The intervals of rank n are the intervals [fn,,(O),fn.,(1)), i = 1 , 2 , ' ' "  ,p . .  The 

collection of all such intervals, over all n > 1, is known as the class of 

fundamental intervals. We shall refer to the numbers f,~ (0), f~, (1) as fundamen- 

tal endpoints. 

We denote by An the length of the largest interval of rank n: 

A. = max {/n,, (1) - ft., (0)}. 

Le t / z  denote Lebesgue measure on L For n = 0, 1 , 2 , . . .  we define the nth 

iterated distribution ~n by 

O . ( t )  = ~ ( { x  ~ I: rn = Tnx  <-- t} )=  ~ (T-n [0 ,  t]), t ~ I. 

The iterated densities S, are defined almost everywhere on I by 

sn(t )  = ~ ' ( t ) .  

The invariant measure v is a probability measure, whose existence is guaranteed 

for admissible transformations satisfying R6nyi's condition (see below), such that 

for arbitrary measurable sets E CI, 

v ( T - ' E )  = v(E).  

The invariant distribution �9 is defined by 

q~(t) = v([0, t]), t ~ I, 

and R~nyi's invariant density h is defined by 

h (t) = qb'(t), t E I. 

4. R~nyi's condition 

Put 

and 

sup f"  ,(t) 
'~' = C,~,  __<o~ 

!n~fZ,(t) 

max C,~ , = C.. 
i 
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R~nyi's condition is the requirement 

sup(:?. = C<oo.  
n 

5. The class ~ of R~nyi transformations 

We denote by ~ the subclass of admissible transformations which fulfill 

R6nyi's condition. While R6nyi himself gave no indication of the nature of this 

class, the following result appears to be well known among present-day ergodic 

theorists. 

THEOREM 1. I f  T E M and inf,~, T'(t) > 1, then T E fit. 

NOTE. T' is not defined at the points a,; the condition above is an 

abbreviation for 

PROOF. Here 

relationship 

min inf T',( t ) > 1. 
i rE[at- l ,  a~] 

and in what follows we will make use of the functional 

(5) f.+,.,(t) = fj 0r,~k (t)) 

where i on the left determines j and k on the right, and conversely. Differentiat- 

ing (5) and using the notation of section 4, we obtain in an obvious manner 

c~ sup f;(f" (tl)) 
' /;(f~ k (t2))' 

the supremum being taken over all tl, tz E I. We can estimate this supremum by 

noting that the arguments of f~ differ by a quantity not larger in magnitude than 

A,. Writing 

M = max sup If'~(t)l < ~, 
J : ~ I  

we have 

a : m)n inf,~, f~ (t) > 0, 

1 _--< sup f;(f., k (t,)) < 1 + ~MA, 
f~(f,,k (t2)) = a 

by the mean value theorem. Thus 
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Taking the supremum first over k on the right, then over i on the left, gives 

Note that C1 is finite; in fact C1 _-</3/a where 

/3 = max supf}(t). 
J t E I  

Therefore 

sup  ClA(l+  n) 
will be finite provided the product on the right converges; this is equivalent.to 

the convergence of the series 

~hn. 
We establish this by showing that, for all n, An N/3". (By our hypothesis,/3 < 1.) 

The length of a typical interval of rank 1 is 

f~ (1) - f~ (0) = f,(0) =/3 

by the mean value theorem. Hence h~ =</3. An induction can be based on (5); 

assuming h~ =</3 t for l =< n, we write the length of an interval of rank n + 1 as 

fn+,.,(1) - fn+,.,(0) = fj (f,,k (1)) - fj (f..k (0)) 

= f~(O)ffn, k(1)--Kk(O))<-/3A,.  <-/3"+' 

so that A,+I =</3 n§ completing the proof. We have shown that R~nyi's condition 

obtains with the constant 

M n 

Consider now the question of what happens when the slope T' can assume 

values _-< 1. Our previous argument already shows that T E ~ if 

n = l  
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the necessity of this condition is more troublesome to establish. However, when 

we consider slopes =< 1 we move out of range of Kakeya's theorem, and we will 

at the very least want to assure ourselves that A.--.  0. 

THEOREM 2. An admissible transformation belongs to ~ if, and only if, 

~" A. < o0. 
n = !  

PgooF. Sufficiency has been shown; necessity is proved in two steps. First we 

show that T ~  ~ ~ A, ~ 0 .  For, if this is not the case, then we must have 

A, ~ c > 0, since the sequence {A,} is monotonically decreasing. Thus we must 

be able to produce an interval [o-, r] C I with z - cr = c, and in whose interior no 

fundamental endpoint can be found. It is possible that i) o- is such an endpoint, 

but not r ii) r is such, but not o-; or iii) neither is. Assume (iii). Then there must 

be fundamental endpoints arbitrarily close on either side. Given e > 0 there 

exists n such that [f,~ ,(0),.f.., (1)] D [o', r], the corresponding endpoints of these 

intervals being separated by less than e (see Fig. 2). Now f., , (o ')E (f,~,(0), 

/..,(1)) C[o- - e, r + el;  however we cannot have/ . . , (o ' )  E (o, z), for then also 

/..,(.f,.,j(0))E (o', ~') for some m,]. But/~,(/ . . . j(0)) = f  . . . .  k(0) is a fundamental 

endpoint, contradicting the construction of [or, ~']. Thus we must have either a) 

[,. ,(or) E~ [a  - e, o'] or b) f,. , (a )  E [r, z + e]. On (a), 

"I' 

O' 

/ 
t 

Y 
! / 
I 

fn,i(O) o" T fn,i(l) 
Fig. 2 
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and 

SO 

because e 

and 

SO 

/ . . ,  ( ( ~ )  - f .  , (o) = f ' . ,  (~)(~ <= 

f.., (1) - f.,,(o-) = f ' . ,  (7)  (1 - (r) -> c, 

f'.,, (T/) > o'c 1 

f :  --  , ,(~) 1 - o "  e 

is arbitrary, this violates R6nyi's condition. Likewise, on (b), 

f~, ,(o')  - f~ ,(0) = f "  ,(~)o" ~ c 

f. . ,  ( 1 )  - f.. ,  (~ )  = f ' ,  ( n )  (1  - , ~ )  _-< ~,  

fk , (~)  > c ( 1 -  r  

f ' , , ( n ) =  ~ ~ '  

again contradicting R6nyi's condition. 

On cases (i) and (ii), the same kind of argument applies. 

Now we establish convergence of the series E A.. We have 

f . . , ( 1 ) - f . . , ( O ) = f ' , ( O )  

so that, at least for one particular 0 G (0, 1), 

~. ,0 < f .( ) = A , .  

In view of R6nyi's condition, this implies that 

sup f "  ~(t) _-< CA,. 
t e l  

(6) 

Again, 

f.~,(f.., (1)) - f.. ,( f . . ,(O)) = f'.. , (O) ( f . . , (1 )  - f.~, (0)) = CAZ.. 

Taking the supremum over i and ] on the left gives 

A2, --< CA2,. 

Since A . ~ 0  we can choose N such that CAu = p  < 1. Then A2u--< CA~, 

A4N _--< CAIN_ -< C(CA~) 2= C3A~, and, by induction, 

A2-N_-- < C2"A~, /C = p~"/C. 
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Consider those terms Ak for which k lies between 2nN and 2n+'N. There  are 

essentially 2nN such terms, all =< A2-~. By the above inequality, the sum of these 

terms cannot exceed 2"Np 2~/C. It follows that the series E An must converge .  

While we have stated Theorem 2 in a form convenient for use, let us note that 

we have actually proved 

THEOREM 2'. An admissible transformation belongs to ~ if, and only if, 
A, = O(O ~) for some 0 E (0, 1). 

As an application of Theorem 2, we prove 

THEOREM 3. If ~r denotes the subclass of sr whose elements T satisfy 
t t  

inf I-I T'(Tk-I~) > 1, 
t E 1  k =1 

then M. C ~. Moreover, any T E ~ necessarily belongs to some Mn. 

PROOF. Given n, we have for some i and some 0 E (0, 1) 

An = fn. , ( 1 ) - f , .  ,(0) = f~.,(0). 

Now 

1 = d_d - T ~ ( t )  l 
f ' , , ( 0 )  dt I,=t 

where ~ = f,,i(0). Thus, for a definite ~ E I we have 

From this we have 

where 

and 

r l  

1A. = ~= T'(Tk-'~)" 

1 
- -  >- a/3 t~ 
A n - -  

N 

/3 = inf r I  T '(Tk-I~) 
t e l  k =1 

m 

a = inft~, kI~I_-~= T'(Tk-I~)" 
m < ; N  

If T E MN then /3 > 1; therefore EA, < oo and T E ~.  
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Conversely, if T E ~ ,  then (6) and the fact that A, ~ 0 assure the existence of 

N such that 

sup f~., ( 0 ) <  1 
0 E I  

for each i; that is to say, T ~ seN. 

We may paraphrase this result as follows. 

THEOREM 3'. A n  admissible transformation T belongs to ~ if, and only if, 

some iterate of T has derivative everywhere > 1. 

NOTE. We are being informal here; see the remark following the statement 

of Theorem 1. 

By way of illustration, consider the transformation 

(7) T: x ~ 2 x  + 3 sin(27rx) (m o d l )  

which has a minimum slope of 2 - 3 7 r / 5  ~ .115; we find by numerical methods 

that T E zr and hence that T E ~.  

Theorem 3' shows as well that certain transformations do not belong to 2 .  

Thus T: x ~ x + x 2 (mod 1) is not in ~ ,  for any iterate of T will have derivative 

= 1 at x = 0. More generally we have 

THEOREM 4. Let T E ~1, and let V = {x E I : T'i(x ) <= 1 for some i }. Then T 

cannot belong to ~ if V contains an orbit under T. 

PROOF. Suppose Tm~ E V for m = 0 , 1 , 2 , ' "  . Then 

d T " ( t )  I d t  ,~, = IZI T'(Tk-l~:) =< 1 ; k = ~  

the conclusion follows from Theorem 3'. 

We see from the above that an admissible transformation will certainly belong 

to ~ if its slope is everywhere > 1, and may or may not belong to ~ if smaller 

slopes occur. The following result brings out the delicacy of the question in the 

borderline case where a minimum slope of 1 occurs at a finite number of points. 

THEOREM 5. Let T ~ s t  be such that inf T'( t )  = 1, and suppose that the set 

U = {x E I : T'i(x) = 1 for some i} consists offinitely many points. Then T ~ ff~ if, 

and only if, U contains no orbit under T. 

Despite this "delicacy",  we have the following result, which is easily shown by 

constructing ~r transformations similar in appearance to (7). 
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THEOREM 6. There exist transformations in ~ whose derivative remains 

arbitrarily small on an interval of length arbitrarily close to 1. 

For proofs of these results, and for further discussion, we refer the reader to 

our dissertation [2]. 

6. Major results 

The following theorem imitates the result of Kuz'min [4]. Our proof is 

modelled directly on that given by Billingsley [1] in connection with the 

continued fraction*. 

THEOREM 7. Let T ~ ~.  Then the iterated distributions cb. converge uni- 

formly, as n ~ 0% to the invariant distribution ~.  

PROOF. We begin by showing that the transformation T is mixing, which 

means that for arbitrary Borel sets A , B  in L 

j im  v ( T - " A  n B )  = v ( A ) v ( B ) .  

(Recall that v is the invariant measure; Lebesgue measure is denoted by/~.) Let 

~q, be the or-algebra consisting of sets of the form T-"A,  A being a Borel set in I. 

The ft. form a decreasing sequence of tr-algebras; the limit 

n-I  

is called the tail o'-algebra. It can be shown (see [1, p. 121]) that T is mixing if c~ 

contains only sets of measure 0 or 1. We verify now that this is the case. 

Let [a, b] be a subinterval of I, and let D,  denote the interval 

[f.., (0), f.,, (1)) 

of rank n. Using the customary notation for conditional probability, we have 

/z(T "[a, b ] / D . )  - f" , ( b ) - f . ,  ,(a) 
- f . . , ( 1 ) -  f,~,(0) 

= f ' ,  ,(0,) (b - a)  
f:, ,(0:) 

where 0, E (a, b) and 0: E (0, 1). By R6nyi's condition, 

'Th is  result also occurs in F-expansions revisited by R. L. Adler  which appears in Recent  
Advances  in Topological Dynamics,  Lect. Notes in Math. 318 (1973). 
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b - a  - - <  tz(T-"[a,b]lD. )=< C(b -  a). C = 

It is clear that we may replace [a,b] by an arbitrary Borel set A C I :  

t't(~ ) <__ ~(T-"A ID.)<= Ctz(A ). 

Using (1) and the fact that h = dv/dlz, we may convert this to an inequality 

involving v; this works out to be 

v ( A ) <  v(T-"A [ D , ) =  < C4v(A). 
(8 )  C 4 = 

Suppose now that A is a set in the tail o--algebra ~3. Then for any n, there is a 

Borel set B such that A = T-"B. Thus from (8) we obtain 

v(A) = v(T-"B)_ v(B) 
C 4 C 4 - C 4 <=v(T-"BID.)=v(AID.).  

If v(A)>O, then we may write 

v(A )v(t~ [ A ) <  C'v(D~ IA ). 
(9) v(D.)= v(A ]D.) = 

The fundamental  intervals may be used to generate the Borel sets; therefore 

from (9) we deduce 

v(E) < C"v(EIA) 

for an arbitrary Borel set E. Taking E to be the complement  of A, we find that 

v(E) = 0, which is to say that v(A) = 1. This shows that ~ contains only sets of 

measure 0 or 1, and hence that the transformation T is mixing. 

We now demonstra te  that, for arbitrary measurable A C I, 

(10) ! i m / z ( T - " A )  = v(A) ,  

and to do this we use the equality 

The fact that T is mixing can be written 

v ( T - " A N B ) = ~  xBdv--~v(A)v(B) as n---~o% 
3-c "A 
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XB being the characteristic function of the set B. By taking linear combinations 

of such characteristic functions, we conclude that 

fr sdv= ,(A ) f, sdv (11) Jim| --a 

for an arbitrary simple function s. Since 1/h is measurable and bounded, we may 

approximate it uniformly by simple functions. Therefore we say replace s in (11) 

by 1/h and write 

2 i m o ~ ( T - " A )  = -o,, ~ -dv  = v ( A )  ~-d,~ = v ( A ) ,  : 

proving (10). Taking, for A, the interval [0, t], we conclude 

!im qbn(t) = t,([0, t]) = qb(t). 

That the convergence is uniform follows automatically from the fact that all the 

qb, and qb as well, are both continuous and monotone. This completes the proof. 

Using this result, we begin our assault on the invariant density. 

THEOREM 8. Let T E ~. Then h is continuous on L and is the uniform limit of 
the iterated densities. 

PROOF. We begin by showing that the iterated densities conform to the same 

inequality (1) that bounds the invariant density h. Applying R6nyi's condition to 

the formula 

S~(t) = ~ f',,,(t) 
i = l  

we obtain 

sup S, (t) < C inf S. (t). 
t e l  t f i ~ l  

But since f~S,(t)dt = 1, we must have infS,( t )  < 1, so that 

S,(t)<=C for t E L  

Likewise we find that S,(t)>= 1/C on /. 

Next we show that there necessarily exists an N such that 

N 

sup ,~ (f~,, (0) 2 < 1. 
I E I  i = l  

(12) 

We have, certainly 

0rN.,(t)) = sup fN,,(t) fN,,(). 
i \ t e l  " 
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The first term on the right is =< CAN by (6); the second term is just SN(t) which is 

=< C as we have seen. Therefore the left hand side of (12) is =< C2AN which, by 

Theorem 2', can be rendered arbitrarily small by choosing N sufficiently large. In 

what follows, we suppose N to be such that (12) obtains. 

The following identity is true for any nonnegative integer k: 

Sk+~t) = ~ Sk(fN, ,(t))fN,' ,(t). 
i = 1  

By differentiation we obtain 

(13) 

Put 

SLN(t) = ~ {S'k(fN,,(t)) (f;~,,(t))2 + Sk(fN,,(t))f';~,,(t)}. 
i 

and for n = 0 , 1 , 2 , - . .  

d = sup ~ [f~, ,(t)l < o~ 

t e l  i 

Bo = supJ S'o(t)l. 
t e l  

Let 0 < 1 denote the value of the left hand side of (12). From (13) we get 

Bk§ BkO + Cd, 

and from this we infer the sequence 

Bk, Bk§ Bk+2N,''" 

is uniformly bounded by some number/~k. We conclude that the entire sequence 

{B,}, n = 0 , 1 , 2 , - - -  is bounded by B = max{/30,/~,," ",/3N ,}. 
Thus we have now established that the sequence {S,} of iterated densities is 

uniformly bounded and equicontinuous. By the Ascoli theorem there must exist 
a subsequence {Y'.} with continuous limit: 

lim :T,(t) -- g(t), say. 

Since the convergence is uniform on L we may integrate to obtain 

f0' 5r dr = G(t) ,  t E I. Lmo 

But {f'o6f~(~)dr} is a subsequence of {~.(t)}, and so from Theorem 7 we 

conclude that G = ~ ,  whence G '  = g must be equal to the invariant density h. 

Thus h is continuous on L 
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To show that the full sequence of iterated densities converges uniformly to h, 

assume the contrary. Then it must be possible to find an e > 0 and a subsequence 

{~,} of {S,} such that 

(14) s u p l 6 P , ( t ) - h ( t ) l > - e  for all n. 
t ~ l  

The sequence {.9~ is itself uniformly bounded and equicontinuous, and so must 

possess a uniformly convergent subsequence with limit, say g. As before, we find 

that g = h, and this is incompatible with (14). 

By a simple extension of the same reasoning, we see that h will be "near ly"  as 

differentiable as T. 

THEOREM 9. Let  T E ~ and  suppose that each f~ E C "~ [0, 1], 2 <= m <= oo. Then 

h ~ C m 2[0, 1]. Furthermore, for k <- m - 2 ,  S~  ) converges uniformly to h ~k) as 

n---~,oo. 

PROOF. Assume m => 3 so that we may take the derivative on both sides of 

(13): 

(15) 

Put 

i 

a = sup ~', ( f k , ( t ) ) 3 <  0 < 1, 
t e l  i 

and 

/3 = sup ~ 3If;,. ,(t)f);. ,(t)J < oo, 
t e l  i 

y = sup ~'~ If'g, ~(t)t < oo 
t e l  i 

We know the S, to be uniformly bounded by C, and the I S'I to be uniformly 

bounded by B. If we put, for n = 0 ,1 ,2 , . .  �9 

A,  = sup [S"(/)I, 
t E I  

then we read from (15) that 

A ~ .N <= A k a  + B[3 § Cy. 

The last two terms being constants, and a < 0 being smaller than 1, we perceive 

as before a uniform bound fi-k to the sequence 

Ak, Ak.N, A k + 2 N ,  " " " 
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Also as before, we produce an absolute bound A for the entire sequence {A,}, 

n = 0 , 1 , 2 , . . . .  

Thus the sequence {S'.} of first derivatives is uniformly bounded and equicon- 

tinuous, and accordingly possesses a uniformly convergent subsequence {5r 

!im 5e'.(t)= g'(t), say. 

Integrating twice and using the same argument as before, we find that g = h so 

that h ' =  g' exists and is continuous. Again as before, we can show that the 

complete sequence {S'} converges uniformly to h '  as n---, 0o. 

It is apparent that an induction can be made to proceed with further 

differentiations of (15); we may therefore regard the proof as complete. 

Our final result shows that analytic R6nyi transformations give rise to analytic 

invariant densities. 

THEOREM 10. Let T E ~t, and suppose that f~ is analytic on I for each i. Then h 

is analytic on L Moreover, for k _~ O, h tk) is the uniform limit of S ~) as n ~ ~. 

PROOF. Since the uniform convergence of the derivatives is covered already 

by Theorem 9, only the analyticity of h needs to be shown. This we shall 

demonstrate first under the assumption of an additional hypothesis, namely that 

for each i, 

(16) sup f',(t) < 1. 
t e l  

For a given e > O, let @ = 9 ( e )  denote the region of the complex plane all of 

whose boundary points are at distance e from I: 

9 = { z E C :  z = t + e ~ , t ~ I , I ( l < l } .  

It is clearly possible to choose e sufficiently small that 

(17) max sup If'~(t)l = [3 < 1, 

and we do so. Our plan is to show that the iterated densities are analytic and 

uniformly bounded in 9 ;  since convergence is known to occur on I C 9, the 

analyticity of the limit h follows from the Vitali convergence theorem (see 

Titchmarsh [7], p. 168). 

The significance of (17) is that each f, contracts the set 9 under mapping; that 

is, 

t E 9  ::), f~(t) E 9. 

This implies through an inductive argument that all the S, are analytic in 9 ; for 

So(t)-= 1, and 
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S,+, ( t )  = ~'~ S.  (~ (t)) f](t)  
i 

for n => 0. The same argument applied to (5) establishes the analyticity of / . , , ,  

i = 1,2,.  �9 . ,p" ;  n = 1,2,3, �9 �9 �9 . Thus it is meaningful to define, for each natural 

number n, 

/~. : max sup I.f.~,(t,)-/,.,(t2)[. 
i t l ,  t 2E  ~ 

A simple inductive argument shows that 

(18) A, =< K/3", n = 1 , 2 , 3 , . . . ,  

where K = d iam(@)= 1 +2E. 

Using (18) it is easy to recast the proof of Theorem 1 so as to establish 

"R6nyi 's  condition" in @: 

sup If '~,(t)[ 
t E ~  

inf [ f'.,,(t)[ 

This same constant C" is the required uniform bound for the iterated densities on 
@: 

=< sup ~ If', ,(t)l--< ~ sup If'. ,(t)[ 
t E ~  i i t E ~  

= C ~. inf,~, f :  ,(t)_--- C' inf,~, ~ f"  ,(t) 

= C?inf S . ( t ) <  ~" 
tE: l 

where, as before, the last step follows from f ' oS . ( t )d t  = 1. 

Thus the theorem is proved subject to (16); assume now that this restriction 

does not hold. By Theorem 3' there must exist an N such that T* = T N has slope 

everywhere > 1. Making the identification 

f* = fN,, i = 1 , 2 , ' - - p  N 
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we see that T* conforms to (16) and is covered by our result. The iterated 

densities for T* form a subsequence 

SO, SN, S2N, S3N, ~176 " 

of the iterated densities for T; with this observation the proof is complete. 

7. Some generalizations 

It is not essential that the transformation T be increasing on each of the 

intervals of rank 1; let us allow it to be increasing on some, decreasing on others. 

(Such a T, of course, does not arise from a function & as in section 2.) Our results 

go through with the addition of some absolute-value signs in appropriate places. 

In a different direction, we generalize by relaxing the differentiability condi- 

tion. Instead of requiring each f~ E C2[0, 1], it is sufficient to require that the first 

derivative be absolutely continuous, and that the second derivative be essentially 

bounded. We have shown ([2], pp. 26-28) that the boundedness of the second 

derivative is crucial. If s is fixed with 1 < s < 2, then T: x --~ x + x s (rood 1) 

cannot belong to ~ by Theorem 4; yet for this transformation we do have 

E~_~ A, < oo. Thus theorem 2 would be false if T could be considered admissible. 

Finally we turn our attention to transformations T mapping I onto itself 

countably-many-to-one. We make no attempt at a complete investigation, but 

simply indicate how our methods may be applied to particular examples. 

Examination of the proofs shows the need for further hypotheses in the 

countable case. Thus, to push through the proof of Theorem 1 it will be sufficient 

to impose the additional requirement 

sup sup ~ [ < ~ .  
tl,t2E! Ji~ 2] 

In Theorem 8, the inequality (12) now involves an infinite series, but can still be 

guaranteed for large N. However, the validity of (13) is not automatic; we 

require uniform (or at least dominated) convergence of the right hand side to 

justify the termwise differentiation. Note that the finiteness of d must now be 

specified. In Theorem 9 analogous new requirements appear. In Theorem 10 we 

verify directly the condition (17) (with sup replacing max) for some @(e). 

Let us consider now the transformation 

T~ : x ~ ~ (mod 1), a _-> 1, 

which for a = 1 corresponds to the continued fraction. We have explicitly 
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[~(t)  = (i + t)  -'/~ 

and it is readily seen that, for a > 1, all the above requirements are met. For 

a = 1 we work with the iterate T~ and everything goes through. Thus we infer 

the analyticity on [0, 1] of the invariant density he(t); for a = 1 this is confirmed 

by the fact, known to Gauss, that 

1 1 
h , ( t )  log2 1 + t" 
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